Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions

نویسندگان

  • Gilles R. Clément
  • Angelia P. Bukley
  • William H. Paloski
چکیده

In spite of the experience gained in human space flight since Yuri Gagarin's historical flight in 1961, there has yet to be identified a completely effective countermeasure for mitigating the effects of weightlessness on humans. Were astronauts to embark upon a journey to Mars today, the 6-month exposure to weightlessness en route would leave them considerably debilitated, even with the implementation of the suite of piece-meal countermeasures currently employed. Continuous or intermittent exposure to simulated gravitational states on board the spacecraft while traveling to and from Mars, also known as artificial gravity, has the potential for enhancing adaptation to Mars gravity and re-adaptation to Earth gravity. Many physiological functions are adversely affected by the weightless environment of spaceflight because they are calibrated for normal, Earth's gravity. Hence, the concept of artificial gravity is to provide a broad-spectrum replacement for the gravitational forces that naturally occur on the Earth's surface, thereby avoiding the physiological deconditioning that takes place in weightlessness. Because researchers have long been concerned by the adverse sensorimotor effects that occur in weightlessness as well as in rotating environments, additional study of the complex interactions among sensorimotor and other physiological systems in rotating environments must be undertaken both on Earth and in space before artificial gravity can be implemented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Variable Vector Countermeasure Suit (V2Suit) for space habitation and exploration

The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a novel system concept that provides a platform for integrating sensors and actuators with daily astronaut intravehicular activities to improve health and performance, while reducing the mass and volume of the physiologic adaptation countermeasure systems, as well as the required exercise time during long...

متن کامل

Artificial Gravity: Will it Preserve Bone Health on Long-Duration Missions?

Prolonged microgravity exposure disrupts bone, muscle, and cardiovascular homeostasis, sensory-motor coordination, immune function, and behavioral performance. Bone loss, in particular, remains a serious impediment to the success of exploration-class missions by increasing the risks of bone fracture and renal stone formation for crew members. Current countermeasures, consisting primarily of res...

متن کامل

Combining ergometer exercise and artificial gravity in a compact-radius centrifuge

Humans experience physiological deconditioning during space missions, primarily attributable to weightlessness. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor deconditioning, and cardiovascular alteration, which may lead to orthostatic intolerance when astronauts return to Earth. Artificial gravity could provide a comprehensive countermeasure capable of chal...

متن کامل

Potential exercise countermeasures to attenuate skeletal muscle deterioration in space

motion by the Russians in 1957. By 1969 the United States led by President John F. Kennedy’s initiative, placed Neil Armstrong as the first man on the moon. During historic missions such as Gemini and Apollo, notable deconditioning effects were observed in astronauts and cosmonauts as a result of the zero gravity (g) environment.1 A major area of both structural and functional deconditioning oc...

متن کامل

Artificial gravity: a possible countermeasure for post-flight orthostatic intolerance.

Four payload crewmembers were exposed to sustained linear acceleration in a centrifuge during the Neurolab (STS-90) flight. In contrast to previous studies, otolith-ocular reflexes were preserved during and after flight. This raised the possibility that artificial gravity may have acted as a countermeasure to the deconditioning of otolith-ocular reflexes. None of the astronauts who were centrif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015